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Gaussian-cluster models of percolation and self -avoiding 
walks 

Veit Elser 
Lawrence Berkeley Laboratory and Department of Physics, University of California, 
Berkeley, California 94720, USA 

Received 4 November 1983 

Abstract. Continuum models of percolation and self-avoiding walks are introduced with 
the property that their series expansions are sums over linear graphs with intrinsic com- 
binatorial weights and explicit dimension dependence. 

1. Introduction 

The importance of dimensionality in statistical mechanics has motivated the study of 
a number of systems where the dimensionality D is a freely adjustable parameter. 
Two examples are the D-dependence of momentum (loop) integrals in field-theoretic 
models (Leibbrandt 1975) and the series expansions for models defined on a D- 
dimensional hypercubic lattice where D also appears explicitly (Fisher and Gaunt 
1964). This paper introduces models of percolation and self-avoiding walks where 
series expansions exhibit a D-dependence in yet another way. 

The basic idea is to exploit a well known property of gaussian integrals (Kirchhoff 
1847). Let xl,.  . . , x, be D-dimensional Cartesian coordinates of n points and let C 
be a simple connected graph having n vertices labelled 1 , 2 , .  . . , n. If we associate 
each edge of C with the pair of vertices it connects, then 

where T ( C )  denotes the number of spanning trees of C. Thus, if a problem can be 
formulated in the continuum in such a way that the cluster integrals appearing in series 
expansions are always of the above type, the task is reduced to combinatorics. This 
strategy has been used previously by Uhlenbeck and Ford (1962) in their study of a 
gas of particles having the pairwise interaction -/3 V( r) = log[ 1 - exp(-ar’)]. 

2. Percolation 

Consider the percolation problem defined on a set of N points xl,.  . . , xN distributed 
uniformly at random inside a D-dimensional volume V. Clusters are defined by 
establishing connections (adjacency) between certain pairs of points. Specifically, points 
x, and xi are connected by an ‘edge’ with probability exp[-a(xi-xj)’]. Here a plays 
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1516 V Elser 

the role of the bond probability and controls the size of clusters when one maintains 
a fixed density p = N /  V. Equivalently, fixing a and varying p reproduces the site-type 
problem. 

Our approach to analysing this model will be to  obtain the so-called ‘cluster 
numbers’ (Stauffer 1979). A k-cluster is defined to be an edge-connected set of k 
points having no edge connections with any of the other N - k points. Dividing the 
average number of k-clusters present in the volume by N gives the cluster numbers 
&(XI,. . . , xN). Averaging this quantity over all ensembles of points gives the cluster 
numbers appropriate to a uniform random distribution of points: 

We will obtain nk by considering P k ,  the probability that a given point, call it y1, 

belongs to a k-cluster (again, averaged over ensembles). The cluster numbers then 
follow from nk =pk/k .  There are 

ways of choosing the other k - 1 points of the cluster, call them y2,. . . , Yk. Once 
chosen, the set of possible k-clusters that can be formed fall into a one-one correspon- 
dence with the set of simple connected graphs on k (labelled) vertices, (ek. For a 
particular graph C E %k with vertices labelled 1 ,  . . . , k, one associates the following 
probability factor with each pair of vertices 1 i < js k: 

exp[-a(y, - YJ21 if i and j are adjacent; ( 3 a )  PI,(C) = { 1 -exp[-a(y, - Y , ) ~ ]  otherwise. ( 3 b )  

The probability of the cluster configuration is given by the product of these factors 
multiplied by 

where zl, . . . , 2N-k are the points not included in the cluster. In the limit N + CO with 
p and k fixed, the integrations over the positions zl, z2 , .  . . can be evaluated in closed 
form. However, in following the strategy of utilising expressions involving only gaussian 
integrals, we will be interested in expanding in powers of the density: 

= l + p  I d D z l f ( z l ) + -  2 !  dDzl I dDz2f(z , ) f (z2)+ . . . .  (4) 

When (4) is multiplied by the factors (31, the binomial coefficient ( 2 )  (with N+ “3, 

k fixed) and averaged over the positions y l , .  . . , Yk, one obtains the probability Pk(C) 
that y, belongs to a k-cluster with topology specified by C. Summing pk(C) over all 
possible connected graphs C E %k and taking into account the relationship between nk 
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and P k  we arrive at the expansion 

where 
k 

f ( 2 )  = n { 1 - exp[-a( z - Y ~ ) ~ ] } -  I. 
i = l  

We see that ( 5 )  is a sum of terms of the form (1); the coefficient of 

= X k + n - l  

involving contributions from connected graphs having k + n vertices. With this in 
mind, we will consider an expansion of the generating function 

m 

F ( x ,  y ) =  y k n k ( x )  
k = l  

organised in the form 

where W ( C ;  y )  is a polynomial of degree bounded by the number of vertices of C. 
We now turn to the problem of evaluating w( c; y )  for some graph c E %k+,. In 

particular, consider the contributions to the coefficient of y k .  These are due to various 
graphs N E  ( e k  that characterise k-cluster topologies as well as the different ways these 
graphs might be embedded in C. To be precise, let N be a subgraph of C (written 
Nz C ) .  Denote by C - N  the subset of C where all the vertices of N as well as the 
edges incident to them have been deleted. If C - N  is not empty then C - N  is a 
subgraph of C. A subgraph N E  C that corresponds to an acceptable cluster embedding 
will be called a nucleus and has the properties: 

(i) N is connected; 
(ii) C - N  has no edges. (Equivalently: the vertices of N constitute a covering of 

C ;  i.e. at least one end of every edge of C is a vertex of N.) 
The vertices not in the nucleus should be identified with the points z l r . .  . , z,  

outside the cluster, which by ( 5 )  are not mutually interconnected by gaussian factors. 
In ( 5 ) ,  the nucleus belongs to a distinguished subset of the k +  n vertices of C. If we 
relax this condition on the embedding we will be overcounting by the factor ('l"). To 
compensate for this we divide by the same factor in the end. 

For a given cluster embedding or nucleus N E C, there are three types of edges e 
of C. First, if e E N then e contributes a gaussian factor with a plus sign according to  
(3a) .  Second, if the endpoints of e belong to N but eG N then ( 3 b )  applies and the 
gaussian factor comes with a minus sign. Third, if one of the endpoints of e belongs 
to C - N then the origin of the relevant gaussian was (4) and also carries a minus sign. 
The parity of the contribution due to a particular nucleus N G  C is thus 

(- 1 ) € (Cl-  E (MI 
7 

where E ( G )  denotes the number of edges of G. 
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We can now put together the total contribution of a term in (5) coming from a 
particular nucleus N G C: 

Summing all those terms involving a particular graph C gives the weight polynomial 

where v ( G )  denotes the number of vertices of G. 

connected graphs, 
The generating function (6) may also be expressed as a sum over non-isomorphic 

where U( G) is the order of the symmetry group of G. The first few terms of this sum, 
up to graphs with four vertices, are given in table 1 .  

We will now prove two theorems involving the weight polynomial W ( C ;  y) .  These 
are simple consequences of the following lemma: 

Lemma 1 .  Let C be any non-trivial, simple, connected graph and let U be any vertex 
of C. Then, 

( - l p N 1  = 0, (8)  
nuclei 

{ N r  ClusNI 

where the summation is over all nuclei containing U. A proof is given in the appendix. 

Theorem 1 .  Let C be a simple connected graph with at least one cut vertex U. Then 
W ( C ;  1 ) = 0 .  

Proof Let N G C be a nucleus of C. Suppose U $ N. Then, since N is a nucleus, 
U is adjacent only to vertices of N. Now N is connected so we conclude that C- U is 
connected contrary to the statement that U is a cut vertex. Thus U E N and the statement 
of the theorem follows immediately from (7) and Lemma 1.  

Theorem 2. Let C be a non-trivial, simple, connected graph. Then 

d W (  C ;  l ) / dy  = 0. 

Proof 
d 

dY 
( - 1 ) € ( C )  - W ( C ;  1 )  = 1 ( - l ) e ( N b ( N )  

nuclei 
N r C  

= 0. 
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Table 1. 

0 

2 

6 

2 

24 

1 

1 

3 

4 

8 

16 

Y 1 

Y2-2Y 2 

y3-2yZ+y 2 

- 2 y 3 + 3 y 2  6 

y4-2y’+y2 2 

y 4 - 3 y 3 + 3 y 2 - y  0 

-2y4+ 4y3 - 2 y2 4 

-3y4+4y3 8 

4 y 2 - 6 y 3 + y 2  12 

- 6 y 4 + 8 y 3  24 

There is another way of understanding the statement of theorem 2 .  Let Pfiinite be 
the probability that a given point in the percolation problem belongs to a finite cluster. 
Then 

with only the trivial graph contributing to the sum (6). This agrees with our expectation 
that P,,,,, = 1 on the interval 0 s x < x,, where x ,  is the critical density. 

To obtain a non-trivial series we consider the mean cluster size, S ( x ) ,  which is 
unity at x = 0 and diverges at x = x,: 
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Here the weight W(S; 1) is non-zero only for graphs without cut vertices (‘stars’) by 
theorem 1. Below are the first few terms: 

1 1 D/2 2 1 1 D/2-1  1 D/2 1 D/2 S (x ) - ’= l - tx+&)  x +[g(a) ‘$(E) +A(%) ]x3+.  * * .  

The formal D = 0 limit of S( x)  is readily evaluated since now the gaussian integra- 
tions do not involve T ( S )  but are simply * l .  A convenient starting point is (5) where 
we first argue that the summation over connected graphs C E %k collapses to the single 
term involving the complete graph Kk. Any graph with two non-adjacent vertices 
would have contained a factor ( 3 b )  yielding two equal terms of opposite sign upon 
integration. Counting up the terms produced by the factors f(z,)  we then have, 

e-’ X k - l  -- - 
k !  

(D=O)  

s(x)-’ = (1 -e-”)/x. 

While D = 0 is not a physically interesting case, this result does provide a useful check 
on the coefficients of S(x)-’ for general D. 

3. Self-avoiding walks 

Let x l r .  . . , x, be a sequence of points in D-dimensional space visited by a self-avoiding 
walk of n - 1 steps beginning at the point xl. As in the percolation problem, we would 
like to express the idea of a ‘chain’ as well as the ‘excluded volume effect’ in terms of 
gaussian factors. This can be done using the following partition function ( n  2 2): 

1 n-l 

Zn-l = (p) dDx2. . . dDx, 

The first product above realises the chain constraint and by itself reproduces the 
behaviour of the unrestricted walk if one identifies Z, with the number of walks of 
length n - 1. The second product, over all non-consecutive pairs of points, enforces 
the excluded volume constraint and renders the problem non-trivial. 

Observe that every term of (9) has at most one gaussian factor connecting each 
pair of points. If we imagine writing out the n !  copies of (9) generated by all 
permutations of the labels on the points and dividing by n ! ,  the resulting sum in 
graphical language becomes: 

Here h( C) counts the number of Hamiltonian paths in C, i.e. the number of permuta- 
tions of the vertices u ( l )v (2 ) .  . . u ( n )  such that u(i) and u ( i +  1) are adjacent in C 
for 1 S i < n. We can improve upon (10) by using the fact that a general connected 
graph can be decomposed into a tree of non-trivial stars connected at cut vertices. 
Moreover, for Hamiltonian connected graphs ( h ( C )  > O), such a tree must always be 
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a linear chain. Thus, if we define the generating functions 
CO 

G(x)=  Znxn 
n = l  

stars 
s 

then, 

To understand (1 l ) ,  consider a particular sequence of non-trivial Hamiltonian stars 
S I , .  . . , S k  and choose Hamiltonian paths for each one with beginning and ending 
vertices ( u l ,  u l ) ,  . . . , ( u k ,  uk ) .  In order that c' = SISz.  . . S k  has a Hamiltonian path 
beginning at u1 and ending at uk the stars must be glued together in a unique way; 
namely at the cut vertices u1 = u2,  u2 = u3, .  . . , U k - 1  = u k .  Moreover, it is also clear 
that T (  C )  = T ( S ~ ) T ( S ~ )  . . . 7 ( & )  irrespective of the details of the decomposition. 
Finally, one can check that the counting of vertices and excess edges (minus signs) is 
correct. 

The series z( x) begins: 

z(x) = x - ( ~ ) D / Z X 2 + [ - ( a ) D / 2 + 3 ( $ ) D / 2 - ( ~ ) D / 2 ] X 3 + .  . . , 
Values of h ( C )  have been included in table 1. 

We again observe that the formal D = 0 limit is easily evaluated. Considering (9) 
with D = 0 we see that Z ,  = 0 for n 2 2. Thus, 

G(x) = x z(x) = x/(  1 + x) (D=O). 

4. Conclusion 

A particularily interesting question concerns the nature of the singularities of the 
generating functions discussed above as the dimensionality is varied. If we formally 
set D =CO, the singularities are simple poles: 

s ( x ) = ( l - $ x ) - '  G( X)  = X /  ( 1  - X) (D=CO). 

This result is not unexpected and indeed the dominant singularity is believed to remain 
a simple pole provided D >  0,. The value of the critical dimension depends on the 
particular problem and it is believed that 0, = 6 for percolation (Harris et a1 1975), 
and 0,=4 for self-avoiding walks (de Gennes 1972). Evidence of such a critical 
dimensionality might be obtained from numerical work with the series expansions for 
S(x)-' and z(x). 
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Appendix 

Proof of Lemma 1 .  We will use induction on v ( C ) .  There is exactly one simple 
connected graph with two vertices, C,. If we take U to  be either one of the two vertices 
then the nuclei that contain v are v itself and C2 giving 1 - 1 = 0 in (8). Now suppose 
the statement holds for all C with v( C) = 2 , 3 , .  . . , n - 1 for some n 3 3.  Let C,, be 
any simple connected graph with v(C,,) = n and let {v ,  U } E  C,, be any two vertices 
connected by an edge e E C,,. The proof will proceed by decomposing Nu, the set of 
nuclei N G  C,, that contain U. We begin by defining the sets 

N I  = { N  E Nule e N and u E N }  
N2 = { N +  elN E N I } .  

Clearly, .N2 G No and moreover, N I  n N2 = 0. Thus, 

= 0 .  ( 1 2 )  

The set of nuclei in the complement, No - ( N I  U N 2 ) ,  is decomposed further: 

JV-3 = { N  E &""I U e N }  

J V ~ = { N E J V ~ - N ~ ~ ~ E N } .  

For N E N 4 ,  suppose that N - e is a nucleus. Then, ( N  - e )  + e = N E N2,  a contradiction, 
so N - e  cannot be a nucleus. This requires that N - e  consist of two components, 
V ( N )  containing U and U ( N )  containing U. Let v ( N )  be the vertex set of V ( N )  and 
denote by n(u) the set of vertices of C,, adjacent to U. 

We are now prepared to perform a decomposition of N4:  

N5={NEN4ln(U)S U ( N ) } .  

It is clear that for N E  N 5 ,  U ( N )  = U and U is adjacent only to v in N. By deleting 
both U and e from these nuclei we have the following set: 

"4"6 = { N - U - e IN E N 5 } .  

It is easily checked that N6zN3 and N 3 C  hr6 so that N3=N6. This establishes a 
one-one correspondence between N3 and Ar5; the nuclei of N5 having one additional 
edge. The sum over nuclei N E N3 U N5 thus vanishes in the manner of ( 1 2 ) .  

Finally, we consider the remaining nuclei N E N4 - N 5 .  Define: 

2r = { v (N) I N E Jtq - dV5} 

"4"" = { N E N4 - dVSrS/ V( N) = V}. 

For a particular V E  V, it is readily verified that C,, - V breaks up into a set of 
components { w l , .  . . , wk, C,( V)} where w l , .  . . , wk are isolated vertices and C,( V) 
is a non-trivial graph containing U. Moreover, it is also easily checked that the possible 
U ( N )  for N E Nv are precisely the nuclei of C,( V) that contain U. Since U C,( V), 
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2 S v( C,( V ) )  < n and we can apply induction: 

= O  
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